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Problem 2.60

The 1/x2 potential. Suppose

V (x) =

{
−α/x2, x > 0,

∞, x ≤ 0.
(2.189)

where α is some positive constant with the appropriate dimensions. We’d like to find the bound
states—solutions to the time-independent Schrödinger equation

− ~2

2m

d2ψ

dx2
− α

x2
ψ = Eψ (2.190)

with negative energy (E < 0).

(a) Let’s first go for the ground state energy, E0. Prove, on dimensional grounds, that there is
no possible formula for E0—no way to construct (from the available constants m, ~, and α)
a quantity with the units of energy. That’s weird, but it gets worse. . . .

(b) For convenience, rewrite Equation 2.190 as

d2ψ

dx2
+

β

x2
ψ = κ2ψ, where β ≡ 2mα

~2
and κ ≡

√
−2mE

~
. (2.191)

Show that if ψ(x) satisfies this equation with energy E, then so too does ψ(λx), with energy
E′ = λ2E, for any positive number λ. [This is a catastrophe: if there exists any solution at
all, then there’s a solution for every (negative) energy! Unlike the square well, the harmonic
oscillator, and every other potential well we have encountered, there are no discrete allowed
values—and no ground state. A system with no ground state—no lowest allowed
energy—would be wildly unstable, cascading down to lower and lower levels, giving off an
unlimited amount of energy as it falls. It might solve our energy problem, but we’d all be
fried in the process.] Well, perhaps there simply are no solutions at all . . . .

(c) (Use a computer for the remainder of this problem.) Show that

ψκ(x) = A
√
xKig(κx), (2.192)

satisfies Equation 2.191 (here Kig is the modified Bessel function of order ig, and
g ≡

√
β − 1/4). Plot this function, for g = 4 (you might as well let κ = 1 for the graph; this

just sets the scale of length). Notice that it goes to 0 as x→ 0 and as x→∞. And it’s
normalizable: determine A.66 How about the old rule that the number of nodes counts the
number of lower-energy states? This function has an infinite number of nodes, regardless of
the energy (i.e. of κ). I guess that’s consistent, since for any E there are always an infinite
number of states with even lower energy.

(d) This potential confounds practically everything we have come to expect. The problem is
that it blows up too violently as x→ 0.

66ψk(x) is normalizable as long as g is real—which is to say, provided β > 1/4. For more on this strange problem
see A. M. Essin and D. J. Griffiths, Am. J. Phys. 74, 109 (2006), and references therein.
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If you move the “brick wall” over a hair,

V (x) =

{
−α/x2, x > ε > 0,

∞, x ≤ ε,
(2.193)

it’s suddenly perfectly normal. Plot the ground state wave function, for g = 4 and ε = 1
(you’ll first need to determine the appropriate value of κ), from x = 0 to x = 6. Notice that
we have introduced a new parameter (ε), with the dimensions of length, so the argument in
(a) is out the window. Show that the ground state energy takes the form

E0 = − α
ε2
f(β), (2.194)

for some function f of the dimensionless quantity β.

TYPO: The period in Equation 2.189 should be a comma. To be more accuate, the independent
clause should read, “here Kig is the modified Bessel function of the second kind of order ig.”

Solution

Part (a)

Schrödinger’s equation governs the time evolution of the wave function.

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V (x, t)Ψ(x, t), −∞ < x <∞, t > 0

There are two boundary conditions as |x| becomes large: Ψ→ 0 as x→ ±∞. For this problem,
the potential energy function is

V (x, t) = V (x) =

−
α

x2
if x > 0

∞ if x ≤ 0
.

Note that because x has SI units of meters and V (x) has SI units of joules, α has units of
joule ·meters2. The units of each of the constants are as follows.

[m] = kg

[~] = J · s =
kg ·m2

s2
· s =

kg ·m2

s

[α] = J ·m2 =
kg ·m2

s2
·m2 =

kg ·m4

s2

Combine the constants in an arbitrary fashion.

[m]a[~]b[α]c = (kg)a
(

kg ·m2

s

)b(
kg ·m4

s2

)c
= kga+b+cm2b+4cs−b−2c

In order for this combination to be in joules, the following system of equations must be satisfied.

a+ b+ c = 1

2b+ 4c = 2

−b− 2c = −2
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Multiplying both sides of this third equation by −2 gives 2b+ 4c = 4. It’s impossible to choose b
and c such that 2b+ 4c = 2 and 2b+ 4c = 4 because 2 6= 4. Therefore, no combination of the
available constants results in a quantity with units of energy, and no formula for the ground state
energy exists as a result.

Part (b)

Split up the Schrödinger equation over the intervals that V (x) is defined on.
i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ (∞)Ψ(x, t), x ≤ 0

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
− α

x2
Ψ(x, t), x > 0

The only way the first PDE can be satisfied is if Ψ(x, t) = 0 for x ≤ 0. Since the wave function is
continuous, the boundary condition Ψ(0, t) = 0 becomes associated with the PDE over x > 0.

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
− α

x2
Ψ(x, t), x > 0, t > 0

Ψ(0, t) = 0

Ψ(∞, t) = 0

Since Schrödinger’s equation and its associated boundary conditions are linear and homogeneous,
the method of separation of variables can be applied to solve it. Assume a product solution for
Ψ(x, t) = φ(t)ψ(x) and plug it into the PDE

i~φ′(t)ψ(x) = − ~2

2m
φ(t)ψ′′(x)− α

x2
φ(t)ψ(x)

and the boundary conditions.

Ψ(0, t) = 0 → φ(t)ψ(0) = 0 → ψ(0) = 0

Ψ(∞, t) = 0 → φ(t)ψ(∞) = 0 → ψ(∞) = 0

Divide both sides of the PDE by φ(t)ψ(x) to separate variables.

i~
φ′(t)

φ(t)
= − ~2

2m

ψ′′(x)

ψ(x)
− α

x2

The only way a function of t can be equal to a function of x is if both are equal to the same
constant.

i~
φ′(t)

φ(t)
= − ~2

2m

ψ′′(x)

ψ(x)
− α

x2
= E

By applying the method of separation of variables, the PDE has reduced to two ODEs, one in x
and one in t.

i~
φ′(t)

φ(t)
= E

− ~2

2m

ψ′′(x)

ψ(x)
− α

x2
= E
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The ODE in x is known as the time-independent Schrödinger equation (TISE).

− ~2

2m

d2ψ

dx2
− α

x2
ψ(x) = Eψ(x)

Multiply both sides by −2m/~2.

d2ψ

dx2
+

2mα

~2x2
ψ(x) = −2mE

~2
ψ(x) (1)

Suppose that ψ(x) is a known solution and that E is its corresponding energy. Check to see if
ψ(λx) with corresponding energy E′ also satisfies it.

d2ψ(λx)

dx2
+

2mα

~2x2
ψ(λx) = −2mE′

~2
ψ(λx)

Make the change of variables r = λx.

d2ψ(r)

dx2
+

2mα

~2
(
r
λ

)2ψ(r) = −2mE′

~2
ψ(r)

Use the chain rule to write the second derivative in terms of this new variable.

dψ

dx
=
dψ

dr

dr

dx
=
dψ

dr
(λ)

d2ψ

dx2
=

d

dx

(
dψ

dx

)
=
dr

dx

d

dr

(
λ
dψ

dr

)
= λ2

d2ψ

dr2

Consequently,

λ2
d2ψ

dr2
+

2mαλ2

~2r2
ψ(r) = −2mE′

~2
ψ(r).

Divide both sides by λ2.
d2ψ

dr2
+

2mα

~2r2
ψ(r) = −2mE′

~2λ2
ψ(r) (2)

This is the same equation that ψ(x) satisfies [equation (1)] but with r instead.

d2ψ

dr2
+

2mα

~2r2
ψ(r) = −2mE′

~2λ2
ψ(r) = −2mE

~2
ψ(r)

Therefore, if ψ(x) is a solution with energy E, then ψ(λx) is also a solution with energy

E′

λ2
= E → E′ = λ2E.
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Part (c)

Repeat equation (1).
d2ψ

dx2
+

2mα

~2x2
ψ(x) = −2mE

~2
ψ(x)

Let β = 2mα/~2 and κ2 = −2mE/~2.

d2ψ

dx2
+

β

x2
ψ(x) = κ2ψ(x)

Make the inspired substitution ψ(x) =
√
x ζ(x).

d2

dx2
[
√
x ζ(x)] +

β

x2
[
√
x ζ(x)] = κ2[

√
x ζ(x)]

Evaluate the derivative.[
x1/2ζ ′′(x) + x−1/2ζ ′(x)− 1

4
x−3/2ζ(x)

]
+ βx−3/2ζ(x) = κ2x1/2ζ(x)

Combine like-terms on the left side.

x1/2ζ ′′(x) + x−1/2ζ ′(x) +
β − 1

4 − κ
2x2

x3/2
ζ(x) = 0

Multiply both sides by x3/2.

x2ζ ′′(x) + xζ ′(x) +

(
β − 1

4
− κ2x2

)
ζ(x) = 0

Let g =
√
β − 1/4.

x2ζ ′′(x) + xζ ′(x) + (g2 − κ2x2)ζ(x) = 0

Make another change of variables z = κx.

z2

κ2
d2ζ

dx2
+
z

κ

dζ

dx
+ (g2 − z2)ζ(z) = 0

Use the chain rule again to find the derivatives in terms of this new variable.

dζ

dx
=
dζ

dz

dz

dx
=
dζ

dz
(κ)

d2ζ

dx2
=

d

dx

(
dζ

dx

)
=
dz

dx

d

dz

(
κ
dζ

dz

)
= κ2

d2ζ

dz2

Consequently,
z2

κ2

(
κ2
d2ζ

dz2

)
+
z

κ

(
κ
dζ

dz

)
+ (g2 − z2)ζ(z) = 0.

Simplify the left side.

z2
d2ζ

dz2
+ z

dζ

dz
− [z2 + (ig)2]ζ(z) = 0
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This is the modified Bessel equation of order ig. Its general solution can be written in terms of I
and K, the modified Bessel functions of the first and second kind, respectively.

ζ(z) = C1Iig(z) + C2Kig(z)

Now that the solution is known, change back to the original variables.

ζ(x) = C1Iig(κx) + C2Kig(κx)

Since ψ(x) =
√
x ζ(x), the general solution is

ψ(x) =
√
x [C1Iig(κx) + C2Kig(κx)] .

In order to satisfy the boundary conditions, ψ(0) = 0 and ψ(∞) = 0, set C1 = 0.

ψ(x) = C2

√
xKig(κx)

Finally, normalize ψ(x) to determine C2.

1 =

ˆ ∞
0

[ψ(x)]2 dx =

ˆ ∞
0
{C2

2x[Kig(κx)]2} dx =
C2
2πg

2κ2 sinh(πg)
→ C2 = ±κ

√
2 sinh(πg)

πg

Therefore,

ψ(x) = κ

√
2 sinh(πg)

πg

√
xKig(κx).

A plot of the normalized eigenstate versus κx is shown below for the special case that g = 4.

www.stemjock.com



Griffiths Quantum Mechanics 3e: Problem 2.60 Page 7 of 7

Part (d)

Suppose the potential energy function is now

V (x) =

−
α

x2
if x > ε > 0

∞ if x ≤ ε
.

Because x has SI units of meters and V (x) has SI units of joules, α has units of joule ·meters2.
The units of each of the constants are as follows.

[m] = kg

[~] = J · s =
kg ·m2

s2
· s =

kg ·m2

s

[α] = J ·m2 =
kg ·m2

s2
·m2 =

kg ·m4

s2

[ε] = m

Combine the constants in an arbitrary fashion.

[m]a[~]b[α]c[ε]d = (kg)a
(

kg ·m2

s

)b(
kg ·m4

s2

)c
(m)d = kga+b+cm2b+4c+ds−b−2c

In order for this combination to be in joules, the following system of equations must be satisfied.

a+ b+ c = 1

2b+ 4c+ d = 2

−b− 2c = −2

Solving this system yields b = −2a, c = 1 + a, and d = −2, where a is a free variable. For the
simplest combination, choose a = 0.

m0~0α1ε−2 =
α

ε2
.

In order for the combination to be dimensionless, look for nontrivial solutions of

a+ b+ c = 0

2b+ 4c+ d = 0

−b− 2c = 0.

Solving it yields a = c, b = −2c, and d = 0, where c is a free variable. For the simplest one, choose
c = 1.

m1~−2α1ε0 =
mα

~2
Therefore, based on an analysis of the dimensions, the ground state energy has the form,

E0 =
α

ε2
F
(mα
~2
)

= − α
ε2
f

(
2mα

~2

)
= − α

ε2
f(β),

where F and f are arbitrary functions.
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